Cycles

1 Which one of the following equations correctly defines the enthalpy change of formation of carbon monoxide?

2 Which one of the following equations correctly defines the enthalpy change of formation of ethanol, $C_2H_5OH_{(l)}$?

А	2C _(g) +	$6H_{(g)}$ + $O_{(g)} \rightarrow C_2H_5OH_{(I)}$	В	4C _(s) +	$6H_{2(g)} + O_{2(g)} \rightarrow 2C_2H_5OH_{(I)}$
С	2C _(s) +	$3H_{2(g)} + 1/2O_{2(g)} \rightarrow C_2H_5OH_{(I)}$	D	2C _(s) +	$6H_{(g)} + O_{(g)} \rightarrow C_2H_5OH_{(I)}$

3 Consider the data in the table below

Substance	Standard enthalpy change of combustion / kJ mol ⁻¹
hydrogen (g)	-300
carbon (s)	-400
benzene (I)	-3350

What is the standard enthalpy change of formation of liquid benzene calculated to be?

4 When 1.00 g of calcium is burned in oxygen to give CaO, the heat energy liberated is 15.9 kJ (at 25 °C and 1 atm). The standard enthalpy of formation of CaO is

5 The enthalpies of combustion of ethene, C_2H_4 , and butene, C_4H_8 , are represented below as ΔH_1 and ΔH_2 .

What is the value for the enthalpy of the reaction of C_2H_4 to form C_4H_8 ?

 $2C_2H_4 \rightarrow C_4H_8 \qquad \Delta H = ?$

6 Calculate the enthalpy change, ΔH , (in kJ mol⁻¹) for the reaction

 $CH_3OH_{(I)} + 1\frac{1}{2}O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(g)}$

using the enthalpies of formation, $\Delta H_{f^{o}}$, below

Compound	CH ₃ OH _(I)	CO _{2(g)}	$H_2O_{(g)}$
ΔH_{f}^{o} / kJ mol ⁻¹	-238.7	-393.5	-241.8

Cycles

7 The combustion of benzene, C_6H_6 , may be written as $2C_6H_{6(I)} + 15O_{2(g)} \rightarrow 12CO_{2(g)} + 6H_2O_{(I)}$ Using the information in the table, calculate the standard enthalpy change of combustion, ΔH_{comb} , for benzene in kJ mol⁻¹

Compound	ΔH_{f} / kJ mol ⁻¹		
C ₆ H _{6(I)}	+49		
CO _{2(g)}	-393		
H ₂ O _(I)	-286		

8 The enthalpy of combustion of butane, C_4H_{10} , is -2877 kJ mol⁻¹. The enthalpy of formation of CO₂ is -395 kJ mol⁻¹ and that of H₂O is -286 kJ mol⁻¹. What is the enthalpy of formation of butane in kJ mol⁻¹?

9 Some standard heats of formation, $\Box H_f^o$, are as follows:

Compound	ΔH_{f} / kJ mol ⁻¹		
CH _{4(g)}	-74.8		
CO _{2(g)}	-394		
$H_2O_{(g)}$	-242		
O _{3(g)}	+143		

What is ΔH° , in kJ for the reaction

 $3CH_{4(g)}$ + $4O_{3(g)} \rightarrow 3CO_{2(g)}$ + $6H_2O_{(g)}$

10 All of the following have a standard heat of formation of zero at 25 °C and 1.00 atm, except

- A $Br_{2(I)}$ B $I_{2(s)}$ C $H_2O_{(I)}$ D $He_{(g)}$
- 11 Given the following enthalpies of formation

	ΔH_{f} / kJ mol ⁻¹
CaBr _{2(s)}	-682.8
Ca ²⁺ (g)	1925.9
Br ⁻ (g)	-233.9

What is the value of ΔH (in kJ mol⁻¹) for the reaction: CaBr_{2(s)} \rightarrow Ca²⁺(g) + 2Br_(g)

12	The standard enthalpy changes of formation of four compounds are given below	W

	C_2H_4	C_2H_6	C_4H_8	C ₄ H ₁₀
∆H _f /kJ mol ⁻¹	+50	-85	-10	-125

Cycles

Which of the following reactions are exothermic?

$I \qquad C_4H_8 + H_2 \rightarrow C_4H_{10}$	Ш	C_2H_4 + $C_2H_6 \rightarrow C_4H_{10}$	Ш	$2C_2H_6 \rightarrow C_4H_{10}$ + H_2
---	---	---	---	---

13 Calculate the standard enthalpy of formation of ethene $(C_2H_{4(g)})$ given the following data: [3]

	$\Delta H_{combustion}$ /kJ mol ⁻¹		
C _(s)	-394		
$H_{2(g)}$	-286		
$H_2C=CH_{2(g)}$	-1393		